Comparative study on Al-SBA-15 prepared by spray drying and traditional methods for bulky hydrocarbon cracking: Properties, performance and influencing factors
Journal of Colloid and Interface Science, ISSN: 0021-9797, Vol: 663, Page: 749-760
2024
- 1Citations
- 1Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Mesoporous aluminosilicates Al-SBA-15 with large pore sizes and suitable acid properties are promising substitutes to zeolites for catalytic cracking of bulky hydrocarbons without molecular diffusion limitation. The conventional processes to synthesize Al-SBA-15 are time-consuming and often suffer from low “framework” Al contents. Herein, Al-SBA-15 microspheres are synthesized using the rapid and scalable microfluidic jet spray drying technique. They possess uniform particle sizes (45–60 μm), variable surface morphologies, high surface areas (264–340 m 2 /g), uniform mesopores (3.8–4.9 nm) and rich acid sites (126–812 μmol/g) and high acid strength. Their physicochemical properties are compared with the counterparts synthesized using traditional hydrothermal and evaporation-induced self-assembly methods. The spray drying technique results in a higher incorporation of aluminum (Al) atoms into the silica “framework” compared to the other two methods. The catalytic cracking efficiencies of 1,3,5-triisopropylbenzene (TIPB) on the Al-SBA-15 materials synthesized using the three different methods and nanosized ZSM-5 are compared. The optimal spray-dried Al-SBA-15 exhibits the best performance with 100 % TIPB conversion, excellent selectivity (about 75 %) towards the formation of deeply cracked products (benzene and propylene) and high stability. The catalytic performances of the spray-dried Al-SBA-15 with varying Si/Al ratios are also compared. The reasons for the different performances of the different materials are discussed, where the mesopores, high acid density and strength are observed to play the most critical role. This work might provide a basis for the synthesis of mesoporous rich metal-substituted silica materials for different catalytic applications.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0021979724004284; http://dx.doi.org/10.1016/j.jcis.2024.02.180; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85186264606&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/38432173; https://linkinghub.elsevier.com/retrieve/pii/S0021979724004284; https://dx.doi.org/10.1016/j.jcis.2024.02.180
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know