Oligo(styryl)benzenes liposomal AIE-dots for bioimaging and phototherapy in an in vitro model of prostate cancer
Journal of Colloid and Interface Science, ISSN: 0021-9797, Vol: 670, Page: 585-598
2024
- 3Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures3
- Readers3
Article Description
Whilst the development of advanced organic dots with aggregation-induced emission characteristics (AIE-dots) is being intensively studied, their clinical translation in efficient biotherapeutic devices has yet to be tackled. This study explores the synergistic interplay of oligo(styryl)benzenes (OSBs), potent fluorogens with an increased emission in the aggregate state, and Indocyanine green (ICG) as dual Near Infrared (NIR)-visible fluorescent nanovesicles with efficient reactive oxygen species (ROS) generation capacity for cancer treatment using photodynamic therapy (PDT). The co-loading of OSBs and ICG in different nanovesicles has been thoroughly investigated. The nanovesicles’ physicochemical properties were manipulated via molecular engineering by modifying the structural properties of the lipid bilayer and the number of oligo(ethyleneoxide) chains in the OSB structure. Diffusion Ordered Spectroscopy (DOSY) NMR and spectrofluorometric studies revealed key differences in the structure of the vesicles and the arrangement of the OSB and ICG in the bilayer. The in vitro assessment of these OSB-ICG nanovesicles revealed that the formulations can increase the temperature and generate ROS after photoirradiation, showing for the first time their potential as dual photothermal/photodynamic (PTT/PDT) agents in the treatment of prostate cancer. Our study provides an exciting opportunity to extend the range of applications of OSB derivates to potentiate the toxicity of phototherapy in prostate and other types of cancer.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0021979724010130; http://dx.doi.org/10.1016/j.jcis.2024.05.042; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85193586428&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/38776693; https://linkinghub.elsevier.com/retrieve/pii/S0021979724010130; https://dx.doi.org/10.1016/j.jcis.2024.05.042
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know