Estimation of fly ash reactivity for use in alkali-activated cements - A step towards sustainable building material and waste utilization
Journal of Cleaner Production, ISSN: 0959-6526, Vol: 178, Page: 22-33
2018
- 62Citations
- 122Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
This paper addresses the detailed characterization of coal fly ashes with respect to their utilization in alkali-activated cement systems, thus maximizing the use of fly ashes in the construction industry. A technique was developed to estimate the reactivity of low calcium fly ashes in alkali-activated systems. The technique is based on a K-value which combines three characteristics of a fly ash. Two characteristics – amorphous phase percentage and specific surface area determined through Blaine measurement – are observed quantities. The third characteristic – degree of polymerization of silica in the amorphous phase of fly ash – is a calculated parameter. To take into account the water demand of fly ashes, which will influence the amount of water needed to get a workable mix, the shape factor was used to adjust the Blaine specific surface area. The relationship between the proposed K-value and compressive strength of alkali-activated fly ash pastes is approximated by a linear function. The correlation coefficient of the relationship varied from 0.961 to 0.833 for 1 and 91 days compressive strength respectively. The proposed K-value can firstly be used to rank fly ashes for their suitability to produce high strength alkali-activated materials and secondly when calibrated for a specific activator and curing conditions, to predict the compressive strength of alkali-activated fly ash binders.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S095965261733264X; http://dx.doi.org/10.1016/j.jclepro.2017.12.270; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85041853573&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S095965261733264X; https://dx.doi.org/10.1016/j.jclepro.2017.12.270
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know