PlumX Metrics
Embed PlumX Metrics

Minimizing fleet size and improving vehicle allocation of shared mobility under future uncertainty: A case study of bike sharing

Journal of Cleaner Production, ISSN: 0959-6526, Vol: 370, Page: 133434
2022
  • 12
    Citations
  • 0
    Usage
  • 37
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

  • Citations
    12
    • Citation Indexes
      12
  • Captures
    37

Article Description

As a rapidly expanding type of shared mobility, bike sharing is facing severe challenges of bike over-supply and demand fluctuation in many Chinese cities. In this paper, a large-scale method is developed to determine the minimum fleet size under future demand uncertainty, which is applied in a case study with millions of bike sharing trips in Nanjing. The findings show that if future uncertainty is not considered, more than 12% of trip demands may not be satisfied. Nevertheless, the proposed algorithm for minimizing fleet size based on historical trip data is effective in handling future uncertainty. For a bike sharing system, supplying 14.5% of the original fleet could be sufficient to meet 96.8% of trip demands. Meanwhile, the results suggest a unified platform that integrates multiple companies can significantly reduce the total fleet size by 44.6%. Moreover, in view of the Coronavirus Disease 2019 (COVID-19) pandemic, this paper proposes a contact delay policy that maintains a suitable usage interval, which results in increased bike amount requirements. These findings provide useful insights for improving resource efficiency and operational services in shared mobility applications.

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know