A data driven methodology for upscaling remaining useful life predictions: From single- to multi-stiffened composite panels
Composites Part C: Open Access, ISSN: 2666-6820, Vol: 11, Page: 100366
2023
- 4Citations
- 19Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
In this paper we execute a complex test campaign to develop a novel methodology for the Remaining Useful Life (RUL) estimation of complex multi-stiffened composite aeronautical panels utilizing Machine Learning models trained with Structural Health Monitoring (SHM) data from hierarchically simpler elements, i.e., single-stiffened panels. Distributed Fiber Optical sensors (DFOS) are employed to monitor the panels’ behavior undergoing variable amplitude compression-compression fatigue after multiple impacts. A data processing methodology is first applied to the DFOS data, to both alleviate the effect of the variable loading conditions on the monitored strain and ease the computational burden. In this upscaling endeavor, an advanced strain-based Health Indicator (HI) based on Genetic algorithms, created and validated on the single-stiffened panel data, is utilized as the prognostic feature for the RUL estimations of the multi-stiffened panels. The HI displays favorable characteristics in terms of monotonicity and prognosability which are highly desirable for more accurate RUL estimations. For the prognostic task, standard machine learning models are trained using the historical degradation data of the single-stiffened panels and a similarity analysis is performed to enhance the accuracy when predicting the RUL of the multi-stiffened panels. Despite the increased structural complexity of the multi-stiffened panels, we demonstrate that the RUL is able to be predicted with reasonable accuracy. The present work paves the road for upscaling and applying prognostic methodologies to more complex structures beyond simple coupons or generic elements.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S2666682023000221; http://dx.doi.org/10.1016/j.jcomc.2023.100366; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85162776237&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S2666682023000221; https://dx.doi.org/10.1016/j.jcomc.2023.100366
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know