Nanocapsules of therapeutic proteins with enhanced stability and long blood circulation for hyperuricemia management
Journal of Controlled Release, ISSN: 0168-3659, Vol: 255, Page: 54-61
2017
- 28Citations
- 28Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations28
- Citation Indexes28
- 28
- CrossRef17
- Captures28
- Readers28
- 28
Article Description
Among a broad spectrum of medical treatments, protein therapeutics holds tremendous opportunities for the treatment of metabolic disorders, cancer, autoimmune diseases and etc. Broad adaption of protein therapeutics, however, still remain challenging, not only because of poor protein stability, but they also experience fast clearance after administrated and elicit immune responses, resulting in undesirable biodistribution and short blood residence time. In this study, we demonstrate a novel protein delivery method via encapsulating therapeutic proteins within thin shells of poly( N -vinylpyrrolidone) (PVP), which leads to significantly improved protein stability, reduced macrophage uptake, prolonged circulation time and reduced immunogenicity. Exemplified with urate oxidase (UOx), the enzyme used for hyperuricemia treatment, as-formed UOx nanocapsules, n(UOx), exhibits enhanced stability, more significant therapeutic effects, and a more than 10-fold improvement in circulation time when compared with native UOx. This technology not only demonstrates the use of UOx nanocapsules for hyperuricemia management, but also provides a general approach for a broad spectrum of therapeutic proteins for in vivo applications.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0168365916307908; http://dx.doi.org/10.1016/j.jconrel.2017.03.019; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85017381213&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/28288895; https://linkinghub.elsevier.com/retrieve/pii/S0168365916307908; https://dx.doi.org/10.1016/j.jconrel.2017.03.019
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know