Development of hot-melt extruded drug/polymer matrices for sustained delivery of meloxicam
Journal of Controlled Release, ISSN: 0168-3659, Vol: 342, Page: 189-200
2022
- 18Citations
- 30Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations18
- Citation Indexes18
- 18
- CrossRef4
- Captures30
- Readers30
- 30
Article Description
For effective resolution of regional subacute inflammation and prevention of biofouling formation, we have developed a polymeric implant that can release meloxicam, a selective cyclooxygenase (COX)-2 inhibitor, in a sustained manner. Meloxicam-loaded polymer matrices were produced by hot-melt extrusion, with co mmercially available biocompatible polymers, poly(ε-caprolactone) (PCL), poly(lactide-co-glycolide) (PLGA), and poly(ethylene vinyl acetate) (EVA). PLGA and EVA had a limited control over the drug release rate partly due to the acidic microenvironment and hydrophobicity, respectively. PCL allowed for sustained release of meloxicam over two weeks and was used as a carrier of meloxicam. Solid-state and image analyses indicated that the PCL matrices encapsulated meloxicam in crystalline clusters, which dissolved in aqueous medium and generated pores for subsequent drug release. The subcutaneously implanted meloxicam-loaded PCL matrices in rats showed pharmacokinetic profiles consistent with their in vitro release kinetics, where higher drug loading led to faster drug release. This study finds that the choice of polymer platform is crucial to continuous release of meloxicam and the drug release rate can be controlled by the amount of drug loaded in the polymer matrices.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0168365921006908; http://dx.doi.org/10.1016/j.jconrel.2021.12.038; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85122522456&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/34990702; https://linkinghub.elsevier.com/retrieve/pii/S0168365921006908; https://dx.doi.org/10.1016/j.jconrel.2021.12.038
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know