A short-memory operator splitting scheme for constant-Q viscoelastic wave equation
Journal of Computational Physics, ISSN: 0021-9991, Vol: 449, Page: 110796
2022
- 6Citations
- 3Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
We propose a short-memory operator splitting scheme for solving the constant-Q wave equation, where the fractional stress-strain relation contains multiple Caputo fractional derivatives with order much smaller than 1. The key is to exploit its extension problem by converting the flat singular kernels into strongly localized ones, so that the major contribution of weakly singular integrals over a semi-infinite interval can be captured by a few Laguerre functions with proper asymptotic behavior. Despite its success in reducing both memory requirement and arithmetic complexity, we show that numerical accuracy under prescribed memory variables may deteriorate in time due to the dynamical increments of projection errors. Fortunately, it can be considerably alleviated by introducing a suitable scaling factor β>1 and pushing the collocation points closer to origin. An operator splitting scheme is introduced to solve the resulting set of equations, where the auxiliary dynamics can be solved exactly, so that it gets rid of the numerical stiffness and discretization errors. Numerical experiments on both 1-D diffusive wave equation and 2-D constant-Q P - and S -wave equations are presented to validate the accuracy and efficiency of the proposed scheme.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0021999121006914; http://dx.doi.org/10.1016/j.jcp.2021.110796; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85119267025&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0021999121006914; https://dx.doi.org/10.1016/j.jcp.2021.110796
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know