Geometric-structure preserving methods for surface evolution in curvature flows with minimal deformation formulations
Journal of Computational Physics, ISSN: 0021-9991, Vol: 524, Page: 113718
2025
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
In this article, we design novel weak formulations and parametric finite element methods for computing surface evolution under mean curvature flow and surface diffusion while preserving essential geometric structures such as surface area decrease and volume conservation enclosed by the surface. The proposed methods incorporate tangential motion that minimizes deformation energy under the constraint of normal velocity, ensuring minimal mesh distortion from the initial surface. Additionally, they employ a global constant multiplier to preserve the geometric structures in mean curvature flow and surface diffusion. Specifically, for mean curvature flow, the proposed method preserves the decrease of surface area; for surface diffusion, it preserves both the decrease of surface area and the conservation of the volume enclosed by the surface. Extensive numerical examples are presented to illustrate the convergence of the proposed methods, their geometric-structure-preserving properties, and the improvement in mesh quality of the computed surfaces.
Bibliographic Details
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know