PlumX Metrics
Embed PlumX Metrics

Nilpotent center conditions in cubic switching polynomial Liénard systems by higher-order analysis

Journal of Differential Equations, ISSN: 0022-0396, Vol: 379, Page: 258-289
2024
  • 8
    Citations
  • 0
    Usage
  • 0
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

  • Citations
    8

Article Description

The aim of this paper is to investigate two important problems related to nilpotent center conditions and bifurcation of limit cycles in switching polynomial systems. Due to the difficulty in calculating the Lyapunov constants of switching polynomial systems at non-elementary singular points, it is extremely difficult to use the existing Poincaré-Lyapunov method to study these two problems. In this paper, we develop a higher-order Poincaré-Lyapunov method to consider the nilpotent center problem in switching polynomial systems, with particular attention focused on cubic switching Liénard systems. With proper perturbations, explicit center conditions are derived for switching Liénard systems at a nilpotent center. Moreover, with Bogdanov-Takens bifurcation theory, the existence of five limit cycles around the nilpotent center is proved for a class of switching Liénard systems, which is a new lower bound of cyclicity for such polynomial systems around a nilpotent center.

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know