Nilpotent center conditions in cubic switching polynomial Liénard systems by higher-order analysis
Journal of Differential Equations, ISSN: 0022-0396, Vol: 379, Page: 258-289
2024
- 8Citations
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations8
- Citation Indexes8
Article Description
The aim of this paper is to investigate two important problems related to nilpotent center conditions and bifurcation of limit cycles in switching polynomial systems. Due to the difficulty in calculating the Lyapunov constants of switching polynomial systems at non-elementary singular points, it is extremely difficult to use the existing Poincaré-Lyapunov method to study these two problems. In this paper, we develop a higher-order Poincaré-Lyapunov method to consider the nilpotent center problem in switching polynomial systems, with particular attention focused on cubic switching Liénard systems. With proper perturbations, explicit center conditions are derived for switching Liénard systems at a nilpotent center. Moreover, with Bogdanov-Takens bifurcation theory, the existence of five limit cycles around the nilpotent center is proved for a class of switching Liénard systems, which is a new lower bound of cyclicity for such polynomial systems around a nilpotent center.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S002203962300640X; http://dx.doi.org/10.1016/j.jde.2023.10.004; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85174323012&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S002203962300640X; https://dx.doi.org/10.1016/j.jde.2023.10.004
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know