On inverse problems in multi-population aggregation models
Journal of Differential Equations, ISSN: 0022-0396, Vol: 414, Page: 94-124
2025
- 5Citations
- 1Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
This paper focuses on inverse problems arising in studying multi-population aggregations. The goal is to reconstruct the diffusion coefficient, advection coefficient, and interaction kernels of the aggregation system, which characterize the dynamics of different populations. In the theoretical analysis of the physical setup, it is crucial to ensure non-negativity of solutions. To address this, we employ the high-order variation method and introduce modifications to the systems. Additionally, we propose a novel approach called transformative asymptotic technique that enables the recovery of the diffusion coefficient preceding the Laplace operator, presenting a pioneering method for this type of problems. Through these techniques, we offer comprehensive insights into the unique identifiability aspect of inverse problems associated with multi-population aggregation models.
Bibliographic Details
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know