Elastic, super-hydrophobic and biodegradable chitosan sponges fabricated for oil/water separation
Journal of Environmental Chemical Engineering, ISSN: 2213-3437, Vol: 9, Issue: 5, Page: 106027
2021
- 35Citations
- 31Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Due to easy availability and biodegradability, chitosan (CS)-based porous adsorbents have attracted significant interest in oil-spill and organic solvent removal. Herein, a multi-network CS-based sponge was fabricated via ion and hydrogen bond cross-linking using lemon, followed by covalent cross-linking via heptanal, in-situ loading of Fe 3 O 4 -polydopamine (PDA) particles and polylactic acid (PLA) coating. The as-fabricated sponge was systematically characterized by Fourier transform-infrared spectrometry (FT-IR), X-ray diffraction (XRD), vibrating sample magnetometer (VSM), X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), transmission electron microscope (TEM), static water contact angles (WCA) and so on. The as-fabricated CS-based sponge exhibits excellent elasticity, which could be compressed to large strains (80%) at a relatively high stress (0.685 MPa). The WCA of the targeted sponge can reach to 152.2 ± 1.2º after multiple surface functionalization. In addition, the degradation rate of the as-fabricated sponge can still reach 45.01 ± 1.11% within 15 days. Particularly, the sponge could selectively adsorb oil/organic solvent with up to 50 times of its own weight, and effectively separate the surfactant-stabilized oil-in-water emulsion with a flux of 8753 ± 423.56 L m −2 h −1. Last but not least, the sponge can be driven and recycled magnetically. In conclusion, this promising multifunctional sponge can be applied as a new absorbent for oil-water separation.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S2213343721010046; http://dx.doi.org/10.1016/j.jece.2021.106027; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85110472367&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S2213343721010046; https://dx.doi.org/10.1016/j.jece.2021.106027
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know