Composite crosslinked chitosan beads with zeolitic imidazolate framework-67 as peroxymonosulfate activator for increased dye degradation
Journal of Environmental Chemical Engineering, ISSN: 2213-3437, Vol: 11, Issue: 3, Page: 109909
2023
- 25Citations
- 12Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
In this study, a biodegradable cobalt-based peroxymonosulfate (PMS) activator for a dye degradation process was fabricated from crosslinked chitosan (CS) and zeolitic imidazolate framework-67 (ZIF-67) beads. Green synthesis of ZIF-67 produced a good yield, and its particles had an average size of 242 nm and a specific surface area of 1129 m 2 /g. These particles were then incorporated with the crosslinked CS beads at different loadings (2.5–10 %). The catalytic performance of these composite beads was evaluated for rhodamine B (RhB) degradation. Maximum degradation of 98 % was achieved with CS/7.5 %ZIF-67 and a PMS concentration of 0.15 g/L. The degradation equilibrium was obtained within 5 min, with a degradation rate of 0.957 min −1. The pH of the solution had no significant effect on the degradation extent. The predominant radical species in RhB degradation were sulfate radical anions, and a high concentration of coexisting anions decreased the degradation efficiency. The composite beads effectively degraded RhB over five cycles without any chemical recovery treatments. Furthermore, the PMS activating-composite beads effectively facilitated the degradation of various other dyes. This approach is a simple, practical, and cost-effective method for preparing a PMS activator that can efficiently increase dye degradation with ease of separation and recovery.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S2213343723006486; http://dx.doi.org/10.1016/j.jece.2023.109909; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85153374812&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S2213343723006486; https://dx.doi.org/10.1016/j.jece.2023.109909
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know