Novel fusiform core-shell-MOF derived intact metal@carbon composite: An efficient cathode catalyst for aqueous and solid-state Zn-air batteries
Journal of Energy Chemistry, ISSN: 2095-4956, Vol: 64, Page: 385-394
2022
- 56Citations
- 17Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations56
- Citation Indexes56
- 56
- CrossRef3
- Captures17
- Readers17
- 17
Article Description
Owing to the varied mechanisms of ORR/OER, exploiting cost-effective bifunctional catalysts with robust ORR/OER activities and excellent performances in Zn-air batteries is still a challenge. In this work, the Co/CoO@NSC bifunctional catalyst is obtained by using Zn-MOF@Co-MOF as self-template. The Co/CoO@NSC composite has interconnected porous architecture with intact metal@carbon structure, exhibiting superior electrocatalytic activities toward ORR and OER that can be comparable with the Pt/C and RuO 2 catalysts, respectively. The Co/CoO@NSC-based aqueous Zn-air battery achieves a high specific capacity (759.7 mAh/g) and energy density (990.5 Wh/kg), and ultra-long rechargeable property (more than 400 h/1200 cycles). The Co/CoO@NSC-based solid-state Zn-air battery also delivers an excellent performance with a long cycle life (more than 143 h/858 cycles). Most importantly, the newly synthesized and recharged Co/CoO@NSC-based solid-state Zn-air battery can be used to light up a 2 V LED lamp for more than 28 h, demonstrating the superior practicability as rechargeable power source.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S2095495621002904; http://dx.doi.org/10.1016/j.jechem.2021.05.011; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85106635336&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S2095495621002904; http://sciencechina.cn/gw.jsp?action=cited_outline.jsp&type=1&id=7173911&internal_id=7173911&from=elsevier; https://dx.doi.org/10.1016/j.jechem.2021.05.011
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know