Improving redox reactions of Spiro-OMeTAD via p-type molecular scaffold to reduce energy loss at Ag-electrode in perovskite solar cells
Journal of Energy Chemistry, ISSN: 2095-4956, Vol: 102, Page: 151-160
2025
- 1Citations
- 2Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
2,2′,7,7′-Tetrakis( N, N -di(4-methoxyphenyl)amino)-9,9′-spirobifluorene (Spiro) is an essential hole-transport material used in perovskite solar cells (PSCs). However, the redox reaction of Spiro and its impact at the interface with the metal electrode are not yet fully understood. In this study, we introduced a crystalline additive (CA) to regulate the redox process of Spiro and its interface with an Ag electrode. Our findings indicate that CA functions as a molecular scaffold, improving the crystallinity and stability of radicals in Spiro throughout the entire redox reaction. This enhancement increases the hole mobility of Spiro and strengthens the internal electric field, thereby improving hole extraction and transport efficiency at both interfaces. Moreover, the optimized redox reaction of Spiro reduces energy loss at the Ag electrode, significantly boosting the power conversion efficiency to 25.21%. Furthermore, CA mitigates the aggregation of lithium salt and enhances the stability of the device. Our findings contribute to a deeper understanding of hole-transport mechanisms of Spiro and emphasize the importance of reducing energy loss at the Spiro/Ag electrode interface in PSCs.
Bibliographic Details
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know