Fatigability of the thenar muscles using electrical nerve stimulation with fixed stimuli count, while varying the frequency and duty cycle
Journal of Electromyography and Kinesiology, ISSN: 1050-6411, Vol: 73, Page: 102838
2023
- 5Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures5
- Readers5
Article Description
Our aim was to compare three electrical stimulation protocols (P20, P30 and P40), with the same number of stimuli, but different stimulation frequencies (20, 30 and 40 Hz, respectively) and duty cycles [1.2:1.2 s (continuous), 0.8:1.2 s (intermittent) and 0.6:1.2 s (intermittent), respectively). Twitch force and the peak-to-peak M-wave amplitude of the thenar muscles were measured before, during and after each protocol at 1–40 Hz in random order. Twelve healthy adults (23–41 years old) were examined for each protocol in random order and in separate sessions. P20 elicited the highest mean force, and P40 the lowest decrease in percent force at the end of the protocol. Force evoked at 1 and 10 Hz decreased less after P40, compared with P20 and P30. The M-wave amplitude was significantly reduced throughout all protocols, with the largest decrease observed during P30. Although an increase in frequency typically induced earlier and greater decrement in force, this was compensated or even reversed by increasing the interval between each stimulation train, while keeping the number of pulses per stimulation cycle constant. The lesser decrease in M-wave amplitude during P40 compared with P20 indicates that longer between-train intervals may help maintaining the integrity of neuromuscular propagation.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S1050641123000974; http://dx.doi.org/10.1016/j.jelekin.2023.102838; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85177092057&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/37976607; https://linkinghub.elsevier.com/retrieve/pii/S1050641123000974; https://dx.doi.org/10.1016/j.jelekin.2023.102838
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know