Detoxification and immobilization of chromite ore processing residue using the alkali-activated cementitious materials mixed with ascorbic acid
Journal of Environmental Management, ISSN: 0301-4797, Vol: 265, Page: 110350
2020
- 17Citations
- 20Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations17
- Citation Indexes17
- 17
- CrossRef14
- Captures20
- Readers20
- 20
Article Description
The existence of leachable Cr(Ⅵ) in chromite ore processing residue (COPR) makes it hazardous waste. Therefore, resourceful utilization of COPR is necessary to protect the ecosystem and living biota from hazardous effect of Cr(Ⅵ) caused by its leaching. In this study, detoxification and immobilization of COPR was carried out through introduction of ascorbic acid (AA) in alkali-activated cementitious materials. Several dosages of AA were treated with water extractable/soluble Cr(Ⅵ) to achieve the optimum dosage which could be further utilized in solidification process. While, the compressive strength was developed through utilizing different modulus of water glass, liquid to solid ratios and curing temperatures. The results showed that 0.3% of AA was enough to reduce the Cr(Ⅵ) into Cr(Ⅲ), and highest compressive strength of 120 MPa was achieved after using the modulus of 1.6, liquid to solid ratio of 0.24 and curing temperature of 30 °C. The solidified samples having AA had not exceeded the toxicity limit up to 60% addition of COPR, and samples without addition of AA were effective for solidification of 20% COPR. Regarding mechanism, the compressive strength, leaching behavior and microscopic analysis i.e. X-ray diffraction (XRD), Fourier transform infrared spectrometry (FTIR) and scanning electron microscope with energy dispersive spectrometry (SEM-EDS) showed that immobilization of chromium was carried out through physical and chemical means.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0301479720302851; http://dx.doi.org/10.1016/j.jenvman.2020.110350; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85083635633&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/32421549; https://linkinghub.elsevier.com/retrieve/pii/S0301479720302851; https://dx.doi.org/10.1016/j.jenvman.2020.110350
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know