Wildfire prediction using zero-inflated negative binomial mixed models: Application to Spain
Journal of Environmental Management, ISSN: 0301-4797, Vol: 328, Page: 116788
2023
- 14Citations
- 36Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Wildfires have changed in recent decades. The catastrophic wildfires make it necessary to have accurate predictive models on a country scale to organize firefighting resources. In Mediterranean countries, the number of wildfires is quite high but they are mainly concentrated around summer months. Because of seasonality, there are territories where the number of fires is zero in some months and is overdispersed in others. Zero-inflated negative binomial mixed models are adapted to this type of data because they can describe patterns that explain both number of fires and their non-occurrence and also provide useful prediction tools. In addition to model-based predictions, a parametric bootstrap method is applied for estimating mean squared errors and constructing prediction intervals. The statistical methodology and developed software are applied to model and to predict number of wildfires in Spain between 2002 and 2015 by provinces and months.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0301479722023611; http://dx.doi.org/10.1016/j.jenvman.2022.116788; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85145655676&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/36525738; https://linkinghub.elsevier.com/retrieve/pii/S0301479722023611; https://dx.doi.org/10.1016/j.jenvman.2022.116788
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know