Nutrient recovery from digestate: Pilot test experiments
Journal of Environmental Management, ISSN: 0301-4797, Vol: 353, Page: 120166
2024
- 10Citations
- 43Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
A series of technologies have been employed in pilot-scale to process digestate, i.e. the byproduct remaining after the anaerobic digestion of agricultural and other wastes, with the aim of recovering nutrients and reducing the load of solids and organics from it, hence improving the quality of digestate for potential subsequent reuse. In this case the digestate originated from a mixture of dairy and animal wastes and a small amount of agricultural wastes. It was processed by the application of several treatments, applied in series, i.e. microfiltration, ultrafiltration, reverse osmosis, selective electrodialysis and combined UV/ozonation. The initially applied membrane filtration methods (micro- and ultra-filtration) removed most of the suspended solids and macromolecules with a combined efficiency of more than 80%, while the reverse osmosis (at the end) removed almost all the remaining solutes (85–100%), producing sufficiently clarified water, appropriate for potential reuse. In the selective electrodialysis unit over 95% of ammonium and potassium were recovered from the feed, along with 55% of the phosphates. Of the latter, 75% was retrieved in the form of struvite.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S030147972400152X; http://dx.doi.org/10.1016/j.jenvman.2024.120166; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85183319577&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/38280247; https://linkinghub.elsevier.com/retrieve/pii/S030147972400152X; https://dx.doi.org/10.1016/j.jenvman.2024.120166
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know