Innovative approach for predicting daily reference evapotranspiration using improved shallow and deep learning models in a coastal region: A comparative study
Journal of Environmental Management, ISSN: 0301-4797, Vol: 354, Page: 120246
2024
- 14Citations
- 28Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations14
- Citation Indexes14
- 14
- CrossRef7
- Captures28
- Readers28
- 28
Article Description
Accurate and reliable estimation of Reference Evapotranspiration (ETo) is crucial for water resources management, hydrological processes, and agricultural production. The FAO-56 Penman-Monteith (FAO-56PM) approach is recommended as the standard model for ETo estimation; nevertheless, the absence of comprehensive meteorological variables at many global locations frequently restricts its implementation. This study compares shallow learning (SL) and deep learning (DL) models for estimating daily ETo against the FAO-56PM approach based on various statistic metrics and graphic tool over a coastal Red Sea region, Sudan. A novel approach of the SL model, the Catboost Regressor (CBR) and three DL models: 1D-Convolutional Neural Networks (1D-CNN), Long Short-Term Memory (LSTM), and Gated Recurrent Unit (GRU) were adopted and coupled with a semi-supervised pseudo-labeling (PL) technique. Six scenarios were developed regarding different input combinations of meteorological variables such as air temperature (Tmin, Tmax, and Tmean), wind speed (U2), relative humidity (RH), sunshine hours duration (SSH), net radiation (Rn), and saturation vapor pressure deficit (es-ea). The results showed that the PL technique reduced the systematic error of SL and DL models during training for all the scenarios. The input combination of Tmin, Tmax, Tmean, and RH reflected higher performance than other combinations for all employed models. The CBR-PL model demonstrated good generalization abilities to predict daily ETo and was the overall superior model in the testing phase according to prediction accuracy, stability analysis, and less computation cost compared to DL models. Thus, the relatively simple CBR-PL model is highly recommended as a promising tool for predicting daily ETo in coastal regions worldwide which have limited climate data.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0301479724002329; http://dx.doi.org/10.1016/j.jenvman.2024.120246; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85184989216&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/38359624; https://linkinghub.elsevier.com/retrieve/pii/S0301479724002329; https://dx.doi.org/10.1016/j.jenvman.2024.120246
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know