Optimum investment strategy for hydrogen-based steelmaking project coupled with multiple uncertainties
Journal of Environmental Management, ISSN: 0301-4797, Vol: 356, Page: 120484
2024
- 1Citations
- 26Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The large-scale application of hydrogen steelmaking technology is expected to substantially accelerate the decarbonization process of the iron and steel industry. However, hydrogen steelmaking projects are still in the experimental or demonstration stage, and scientific investment decision-making methods are urgently needed to support the large-scale development of the technology. When assessing the investment value, existing studies usually only consider the intrinsic project value under a specific pathway, while ignoring the option value under realistic multiple uncertainties in terms of technology, market, and policy, leading to an underestimation of the investment value. To address this issue, this study constructs a real options model to explore the optimal investment timing and revenue of the hydrogen steelmaking project, by taking into account multi-dimensional uncertainties stemming from price fluctuations in the steel market, the development of the carbon market, and technological advances. Additionally, the impacts of various subsidy policies on the investment strategy are also investigated. Least Squares Monte Carlo method is applied to overcome computational challenges posed by dynamic programming under multi-dimensional uncertainties. The results show that: (i) Investment is not recommended based on current crude steel price and hydrogen price. (ii) When the annual reduction rate of hydrogen price reaches 5%, the optimal investment timing would advance to 2036. (iii) On this basis, with the introduction of a 20% green hydrogen subsidy policy, the optimal investment timing would be further brought forward to 2033. The implementation of tax incentives would significantly increase the investment value. The investment value would surge from 170 million CNY to 262 million CNY as the tax rate decreases from 20% to zero. The findings could provide reasonable suggestions for investment decisions under realistic volatile environments, as well as scientific references for policy design, thus facilitating the large-scale and high-level development of hydrogen-based steelmaking technology.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0301479724004705; http://dx.doi.org/10.1016/j.jenvman.2024.120484; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85188667318&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/38522276; https://linkinghub.elsevier.com/retrieve/pii/S0301479724004705; https://dx.doi.org/10.1016/j.jenvman.2024.120484
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know