Biochar coupled with multiple technologies for the removal of nitrogen and phosphorus from water: A review
Journal of Environmental Management, ISSN: 0301-4797, Vol: 370, Page: 122407
2024
- 7Citations
- 21Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Review Description
Water eutrophication caused by nitrogen (N) and phosphorus (P) has become a global environmental issue. Biochar is a competent adsorbent for removing N and P from wastewater. However, compared with commercial activated carbon, biochar has relatively limited adsorption capacity. To broaden the field scale application of biochar, biochar coupled with multiple technologies (BC-MTs) (such as microorganisms, electrochemistry, biofilm, phytoremediation, etc.) have been extensively developed for environmental remediation. Nevertheless, due to the fluctuations and differences in biochar types, coupling methods, and wastewater types, various techniques show different removal mechanisms and performance, hindering the promotion and application of BC-MTs. A systematic review of the research progress of BC-MTs is highly necessary to gain a better understanding of the current research status and progress, as well as to promote the application of these techniques. In this paper, the application of pristine and modified biochar in adsorbing N and P in wastewater is critically reviewed. Then the removal performance, influencing factors, mechanisms, and the environmental applications of BC-MTs in wastewater are systematically summarized. In addition, the cost analysis and risk assessment of BC-MTs in environmental applications are conducted. Finally, suggestions and prospects for future research and practical application are put forward.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0301479724023934; http://dx.doi.org/10.1016/j.jenvman.2024.122407; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85203450756&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/39265490; https://linkinghub.elsevier.com/retrieve/pii/S0301479724023934
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know