Investigating the robustness of microbial communities in municipal sludge anaerobic digestion under organic loading rate disturbance
Journal of Environmental Management, ISSN: 0301-4797, Vol: 372, Page: 123326
2024
- 1Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures1
- Readers1
Article Description
Anaerobic digestion (AD) frequently encounters disturbances due to variations in organic loading rates (OLRs), which can result in the failure of the sludge treatment process. However, there is a lack of comprehensive studies on the robustness of AD systems against OLR disturbances and the underlying mechanisms. In this study, the responses of reactor performance and active microbial communities in mesophilic AD were investigated and compared under conditions of OLR shock and OLR fluctuation. Statistical analysis confirmed that all reactors recovered from both types of OLR disturbance, indicating both functional and structural robustness of the mesophilic community. Based on metagenomics and metatranscriptomics analyses, it was observed that high diversity within the microbial community led to functional redundancy, which appears to be a key mechanism contributing to the robustness against OLR disturbances. Additionally, for the first time, the potential metabolic diversity of aerobic autotrophy bacteria in AD reactors was identified, including their roles in the utilization of glucose and acetate. Furthermore, the analysis of topological properties within the microbial interaction network was conducted, and the robustness of the community network was verified through the application of random node deletion attacks. The findings from this study provide valuable information for the effective regulation of microbial communities and the design of practical AD systems.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0301479724033127; http://dx.doi.org/10.1016/j.jenvman.2024.123326; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85208930367&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/39550949; https://linkinghub.elsevier.com/retrieve/pii/S0301479724033127; https://dx.doi.org/10.1016/j.jenvman.2024.123326
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know