An energy efficient clustering algorithm based on density and fitness for mobile crowd-sensing network
Journal of Engineering Research, ISSN: 2307-1877
2024
- 1Citations
- 4Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Mobile crowd-sensing (MCS) is a cutting-edge paradigm that gathers sensory data and generates valuable insights for a multitude of users by utilizing built-in sensors and social applications in mobile devices. This enables a broad spectrum of Internet of Things (IoT) services. We introduce a novel MCS algorithm, Mobile Crowd-sensing Low Energy Clustering (MCLEC), which employs advanced clustering techniques to address issues of data oversampling and energy inefficiency prevalent in MCS networks. MCLEC innovatively adjusts clustering radii based on local node density and the proximity of nodes to the cloud server, thus optimizing data transmission paths and reducing energy consumption. A pivotal enhancement in MCLEC is its cluster head election strategy, which prioritizes leaders based on their energy levels and mobility, thereby enhancing network stability and minimizing the frequency of head re-elections. Our comparisons with established algorithms such as LEACH, LEACH-C, LEACH-M, DEEC, and SEP show that MCLEC significantly improves energy efficiency, reduces server load, and prolongs the lifespan of network nodes, establishing it as an effective solution for IoT applications dependent on MCS. Additionally, MCLEC was compared with other novel clustering algorithms including E-FLZSEPFCH, DFLC, ECPF, ACAWT, UCR, CHEF, and Gupta's algorithm. The results indicate that MCLEC also surpasses most of these algorithms in terms of energy consumption and network lifetime.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S2307187724002037; http://dx.doi.org/10.1016/j.jer.2024.07.011; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85199209600&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S2307187724002037; https://dx.doi.org/10.1016/j.jer.2024.07.011
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know