Biogenic emission as a potential source of atmospheric aromatic hydrocarbons: Insights from a cyanobacterial bloom-occurring eutrophic lake
Journal of Environmental Sciences, ISSN: 1001-0742, Vol: 151, Page: 497-504
2025
- 2Citations
- 9Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
As important precursors of ozone (O 3 ) and secondary organic aerosol (SOA), reactive aromatic hydrocarbons (AHs) have typically been classified as anthropogenic air pollutants. However, biogenic emission can also be a potential source of atmospheric AHs. Herein, field observations in a eutrophic lake were combined with laboratory incubation experiments to investigate the biogenic AH emission. Field work showed that the water-air fluxes of AHs measured at sites with high cyanobacteria abundance could reach an order of magnitude greater than those at sites with low cyanobacteria abundance, suggesting that cyanobacteria could be the important contributor to measured AHs. Laboratory incubation experiments further confirmed the AH emission of cyanobacteria and revealed that the emission could change significantly over the lifespan of cyanobacteria and varied to their growing conditions. By combining field observations and laboratory incubation experiments, it has been suggested that the emission of different AH species from cyanobacteria could be modulated by variable biogeochemical mechanisms and that the biochemical process of toluene could be different from that of other AHs. This study investigates AH emissions from inland aquatic ecosystem and suggests that biogenic emission could be a potential source of atmospheric AHs.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S1001074224001876; http://dx.doi.org/10.1016/j.jes.2024.04.011; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85191348134&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/39481955; https://linkinghub.elsevier.com/retrieve/pii/S1001074224001876; https://dx.doi.org/10.1016/j.jes.2024.04.011
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know