Spectral methods for orthogonal rational functions
Journal of Functional Analysis, ISSN: 0022-1236, Vol: 254, Issue: 4, Page: 954-986
2008
- 18Citations
- 9Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
We present an operator theoretic approach to orthogonal rational functions based on the identification of a suitable matrix representation of the multiplication operator associated with the corresponding orthogonality measure. Two alternatives are discussed, leading to representations which are linear fractional transformations with matrix coefficients acting on infinite Hessenberg or five-diagonal unitary matrices. This approach permits us to recover the orthogonality measure throughout the spectral analysis of an infinite matrix depending uniquely on the poles and the parameters of the recurrence relation for the orthogonal rational functions. Besides, the zeros of the orthogonal and para-orthogonal rational functions are identified as the eigenvalues of matrix linear fractional transformations of finite Hessenberg or five-diagonal matrices. As an application we use operator perturbation theory results to obtain new relations between the support of the orthogonality measure and the location of the poles and parameters of the recurrence relation for the orthogonal rational functions.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0022123607004260; http://dx.doi.org/10.1016/j.jfa.2007.11.004; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=38049092945&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0022123607004260; https://dx.doi.org/10.1016/j.jfa.2007.11.004
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know