Nano-encapsulation of probiotics: Need and critical considerations to design new non-dairy probiotic products
Journal of Functional Foods, ISSN: 1756-4646, Vol: 116, Page: 106192
2024
- 6Citations
- 47Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Review Description
People worldwide need to improve their health or intention to control diseases more naturally through ingredients incorporated into foods and beverages, called functional foods. Functional foods include probiotic organisms and bioactive compounds incorporated into dairy and fermentable foods, whose consumption is recommended for various vulnerable groups linked to the need to stay healthy. The increase in the production of functional foods containing live probiotics has led to the development of new products, particularly of the non-dairy type, to counteract the disadvantages of dairy products, such as low digestibility, allergies, intolerance, increased cholesterol, and saturated fatty acids, or the consumer's food preference, which impacts the consumer's health. In this sense, the continuous development of non-dairy matrices through the application of nanotechnological strategies has had a significant impact on food science, providing nano-encapsulation systems for the transport, storage, and release of probiotic organisms, preserving their properties to exert their beneficial effects without affecting the sensory characteristics of the product. This paper addresses recent advances in non-dairy matrices for probiotic strains, pointing out their advantages and limitations according to the characteristics of the matrix and the encapsulation techniques used. Considerations are presented to design non-dairy matrices based on nano-systems that allow obtaining quality products with nutritional value and high bioavailability, that increase viability, protect from factors such as pH and temperature, improve stability for bioactive compounds, and decrease adverse interactions between food components while acting as controlled release systems. Additionally, toxicological aspects and the need to continue toxicity testing for nano-systems intended to be used as non-dairy matrices in food, even when dealing with raw materials recognized as non-toxic, are pointed out, considering that each nanosystem presents different properties. As research and the use of non-dairy matrices for probiotics progresses, it may contribute to mitigating environmental damage.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S1756464624001944; http://dx.doi.org/10.1016/j.jff.2024.106192; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85192065424&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S1756464624001944; https://dx.doi.org/10.1016/j.jff.2024.106192
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know