Studying the effects of superchilling storage conditions on the microstructure and quality of chicken breast meat
Journal of Food Engineering, ISSN: 0260-8774, Vol: 393, Page: 112504
2025
- 4Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures4
- Readers4
Article Description
This work aims to investigate the impact of superchilling conditions on the microstructure and quality of chicken breast meat. The chicken breast samples were partially frozen in an air blast freezer at −30 °C for 1 min and 10 min for microstructure and quality analyses, respectively, followed by storage under three different conditions (‒ 1.3 ± 0.5 °C; −1.6 ± 0.1 °C; ‒ 2.0 ± 0.1 °C) for 21 days. X-Ray microtomography coupled with a thermostated cell was used to image and quantify the evolution of the 3D microstructure throughout the storage period at four different analysis time-points (1, 7, 15, 21 days). Quality attributes such as drip loss, color, and pH was also assessed at the same analysis time-points. This novel approach provided detailed insights into the ice crystal location, distribution, and volume fraction within the samples. Results showed that the microstructure and quality were significantly impacted by storage conditions, with more pronounced changes observed under fluctuating temperature (‒ 1.3 ± 0.5 °C). Notably, ice volume fraction increased from 30% to approximately 37% in constant storage conditions, while fluctuating temperatures led to a decrease in ice volume fraction to around 26%. Drip loss remained stable the first fifteen days of storage before increasing by around 20% for constant temperatures but increased by 64% under fluctuating conditions by day 21. Color difference and pH evolution were also influenced by storage duration and temperature. A principal component analysis showed that drip loss and meat discoloration were strongly correlated to prolonged storage while the evolution of pH and ice volume fraction depended primarily on the specific superchilling temperatures applied. These findings emphasize the importance of precise temperature control during superchilling to maintain meat quality. The novelty of this work lies in the application of X-ray microtomography to assess the impact of superchilling conditions on meat structure, providing a detailed insight into microstructural changes. This method offers a unique, non-destructive way to monitor quality attributes, offering valuable information for optimizing the design of the superchilling process and ensuring product quality.
Bibliographic Details
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know