Balanced truncation for discrete time-delay systems via the interpretation of system energy
Journal of the Franklin Institute, ISSN: 0016-0032, Vol: 359, Issue: 15, Page: 8243-8264
2022
- 4Citations
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations4
- Citation Indexes4
Article Description
In this paper, the balanced truncation method is investigated for discrete time-delay systems. We show that the energy associated with the system controllability and observability can be characterized via the delay Lyapunov matrices, similar to the case of continuous time-delay systems. Then, we balance the system via a coordinate transformation in order to retain the delay structure of systems naturally. In this way, the balanced truncation method is conducted to obtain structure-preserving reduced models. Further, we provide an efficient process to compute a low-rank approximation to delay Lyapunov matrices based on the equivalent expression of discrete time-delay systems, which enables an approximate but fast execution of the proposed method. The stability of reduced models is also discussed in the paper. Finally, numerical examples are simulated to verify the feasibility and efficiency of the proposed method.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0016003222005142; http://dx.doi.org/10.1016/j.jfranklin.2022.07.028; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85137112194&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0016003222005142; https://dx.doi.org/10.1016/j.jfranklin.2022.07.028
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know