Nature-inspired chemistry toward hierarchical superhydrophobic, antibacterial and biocompatible nanofibrous membranes for effective UV-shielding, self-cleaning and oil-water separation
Journal of Hazardous Materials, ISSN: 0304-3894, Vol: 384, Page: 121476
2020
- 284Citations
- 135Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations284
- Citation Indexes284
- 284
- CrossRef248
- Captures135
- Readers135
- 135
Article Description
Fabrication of environmental-friendly, low-cost, and free-standing superhydrophobic nanofibrous membranes with additional functionalities such as self-cleaning and UV-shielding properties is highly demanded for oil-water separation. Herein, we describe the preparation of multifunctional superhydrophobic nanofibrous membrane by using a facile and novel nature-inspired method, i.e., plant polyphenol (tannic acid) metal complex is introduced to generate rough hierarchical structures on the surface of an electrospun polyimide (PI) nanofibrous membrane, followed by modification of poly (dimethylsiloxane) (PDMS). Taking an as-prepared tannic acid − Al 3+ -based superhydrophobic membrane as an example, it not only exhibits anti-impact, low-adhesive and self-cleaning functions, but also presents excellent performance in the separation of various oil-water mixtures. A high flux up to 6935 l m −2 h −1 with a separation efficiency of over 99% and the oil contents in water below 5 ppm is obtained even after repeating use for twenty separation cycles. Additionally, the membrane exhibits excellent UV-shielding property, attributing to the inherent UV-absorbing ability of tannic acid. Furthermore, the membrane also possesses additional properties including antibacterial activity, good biocompatibility, robust mechanical strength, and excellent resistance to various harsh conditions. These attractive properties of the as-prepared membrane make it a promising candidate for potential applications in industrial oil-contaminated water treatments and oil-water separation.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S030438941931430X; http://dx.doi.org/10.1016/j.jhazmat.2019.121476; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85074693955&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/31699485; https://linkinghub.elsevier.com/retrieve/pii/S030438941931430X; https://dx.doi.org/10.1016/j.jhazmat.2019.121476
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know