Perfluorinated alkyl substances affect the growth, physiology and root proteome of hydroponically grown maize plants
Journal of Hazardous Materials, ISSN: 0304-3894, Vol: 438, Page: 129512
2022
- 13Citations
- 51Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Poly- and perfluorinated alkyl substances (PFAS) are a group of persistent organic pollutants causing serious global concern. Plants can accumulate PFAS but their effect on plant physiology, especially at the molecular level is not very well understood. Hence, we used hydroponically-grown maize plants treated with a combination of eleven different PFAS (each at 100 μg L -1 ) to investigate their bioaccumulation and effects on the growth, physiology and their impact on the root proteome. A dose-dependent decrease in root growth parameters was evidenced with a significant reduction in the relative growth rate, fresh weight of leaves and roots and altered photosynthetic parameters in PFAS-treated plants. Higher concentration of shorter PFAS (C < 8) was detected in the leaves, while long-chain PFAS (C ≥ 8) were more retained in roots. From the root proteome analysis, we identified 75 differentially abundant proteins, mostly involved in cellular metabolic and biosynthetic processes, translation and cytoskeletal reorganization. Validating the altered protein abundance using quantitative real-time PCR, the results were further substantiated using amino acid and fatty acid profiling, thus, providing first insight into the altered metabolic state of plants exposed to PFAS from a proteomics perspective.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S030438942201305X; http://dx.doi.org/10.1016/j.jhazmat.2022.129512; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85134315998&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/35999737; https://linkinghub.elsevier.com/retrieve/pii/S030438942201305X; https://dx.doi.org/10.1016/j.jhazmat.2022.129512
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know