First insights into 6PPD-quinone formation from 6PPD photodegradation in water environment
Journal of Hazardous Materials, ISSN: 0304-3894, Vol: 459, Page: 132127
2023
- 44Citations
- 43Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
p -Phenylenediamines (PPDs), an important type of rubber antioxidants, have received little study on their environmental fate, particularly for their vital photodegradation process in water environment. Accordingly, N -(1,3-dimethylbutyl)- N′ -phenyl-1,4-phenylenediamine (6PPD), as a representative of PPDs, was investigated experimentally and theoretically for its photodegradation in water. Rapid photodegradation occurred when 6PPD was exposed to illumination especially UV region irradiation. Under acidic conditions, the photodegradation of 6PPD accelerated mainly due to the increased absorption of long wavelength irradiation by ionized 6PPD. Nine photodegradation products (e.g., 6PPD - quinone (6PPDQ)) of 6PPD were identified by an ultra-performance liquid chromatography QTOF mass spectrometry. Molar yields of photoproducts such as 6PPDQ, aniline, 4-aminodiphenylamine, and 4-hydroxydiphenylamine were 0.03 ± 0.00, 0.10 ± 0.01, 0.03 ± 0.02, and 0.08 ± 0.01, respectively. Mechanisms involved in 6PPD photodegradation include photoexcitation, direct photolysis, self-sensitized photodegradation, and 1 O 2 oxidation, as demonstrated by electron paramagnetic resonance (EPR) analysis, scavenging experiments, and the time-dependent density functional theory (TD-DFT). Notably, the toxicity of the reaction solution formed during the photodegradation of 6PPD was increased by the formation of highly toxic products (e.g., 6PPDQ). This study provides the first explanation for photodegradation mechanisms of 6PPD and confirms the pathway of 6PPDQ produced by the photoreaction in water environment.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0304389423014103; http://dx.doi.org/10.1016/j.jhazmat.2023.132127; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85167827601&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/37573823; https://linkinghub.elsevier.com/retrieve/pii/S0304389423014103; https://dx.doi.org/10.1016/j.jhazmat.2023.132127
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know