Comprehending the practical implementation of permanganate and ferrate for water remediation in complex water matrices
Journal of Hazardous Materials, ISSN: 0304-3894, Vol: 462, Page: 132659
2024
- 6Citations
- 9Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations6
- Citation Indexes6
- Captures9
- Readers9
Article Description
Most previous studies examined permanganate or ferrate oxidation using various emerging pollutants (EPs) spiked in ultrapure water with concentrations of orders-of-magnitude higher than those in natural waters. In present study, we assessed the efficiency of permanganate and ferrate (with ozone as a comparison) at mg L −1 level to remove selected EPs at μg L −1 level in complex water matrices. The efficiency of permanganate and ferrate is more easily affected by the humic acid in synthetic water or dissolved organic matter (DOM) in natural river water compared to ozone. Experiment results revealed that humic acid or DOM were not mineralized by oxidants, but changed in compositional nature, including decreases in the aromaticity, electron-donating capacity, and average molecular weight. At molecular level, condensed aromatic, lignin-like, and tannin-like components in humic acid and DOM are the critical sites being attacked by permanganate or ferrate, the alkene groups and aromatic structures were oxidized predominantly to carboxylic acids. Overall, the present study provided insights into the performance of permanganate and ferrate used for EPs treatment under realistic conditions, as well as alternations of DOM that can be expected following exposure to these oxidants.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0304389423019428; http://dx.doi.org/10.1016/j.jhazmat.2023.132659; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85173373034&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/37820527; https://linkinghub.elsevier.com/retrieve/pii/S0304389423019428; https://dx.doi.org/10.1016/j.jhazmat.2023.132659
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know