Transcriptome-wide m 6 A methylation profiling identifies GmAMT1;1 as a promoter of lead and cadmium tolerance in soybean nodules
Journal of Hazardous Materials, ISSN: 0304-3894, Vol: 465, Page: 133263
2024
- 6Citations
- 4Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations6
- Citation Indexes6
- CrossRef5
- Captures4
- Readers4
Article Description
Lead (Pb) and cadmium (Cd) are common heavy metal pollutants that are often found in the soil in soybean agricultural production, adversely impacting symbiotic nitrogen fixation in soybean nodules. In this study, the exposure of soybean nodules to Pb and Cd stress was found to reduce nitrogenase activity. Shifts in the RNA methylation profiles of nodules were subsequently examined by profiling the differential expression of genes responsible for regulating m 6 A modifications and conducting transcriptome-wide analyses of m 6 A methylation profiles under Pb and Cd stress condition. Differentially methylated genes (DMGs) that were differentially expressed were closely related to reactive oxygen species activity and integral membrane components. Overall, 19 differentially expressed DMGs were ultimately determined to be responsive to both Pb and Cd stress, including Glyma.20G082450, which encodes GmAMT1;1 and was confirmed to be a positive regulator of nodules tolerance to Pb and Cd. Together, these results are the first published data corresponding to transcriptome-wide m 6 A methylation patterns in soybean nodules exposed to Cd and Pb stress, and provide novel molecular insight into the regulation of Pb and Cd stress responses in nodules, highlighting promising candidate genes related to heavy metal tolerance, that may also be amenable to application in agricultural production. Lead (Pb) and cadmium (Cd) are prevalent heavy metal pollutants in soil, and pose a major threat to crop production, food security and human health. Here, MeRIP-seq approach was employed to analyze the regulatory network activated in soybean nodules under Pb and Cd stress, ultimately leading to the identification of 19 shared differentially expressed DMGs. When overexpressed, GmATM1;1 was found to enhance the Pb and Cd tolerance of soybean nodules. These results provide a theoretical basis for studies on tolerance to heavy metals in symbiotic nitrogen fixation, and provide an approach to enhancing Pb and Cd tolerance in soybean production.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0304389423025475; http://dx.doi.org/10.1016/j.jhazmat.2023.133263; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85180419448&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/38118200; https://linkinghub.elsevier.com/retrieve/pii/S0304389423025475; https://dx.doi.org/10.1016/j.jhazmat.2023.133263
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know