Discriminative detection of various organophosphorus nerve agents and analogues based on self-trapping probe coupled with SERS
Journal of Hazardous Materials, ISSN: 0304-3894, Vol: 487, Page: 137150
2025
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Organophosphorus nerve agents (OPNAs) are highly lethal chemical warfare agents (CWAs), which poses a serious threat to human health and safety. The accurate and rapid identification of OPNAs is crucial for medical diagnosis and effective treatment. However, distinguishing between various OPNAs and their analogues using on-site point-of-care testing (POCT) remains challenging. Herein, we present a novel Raman-enhanced strategy that employs a chemical capture probe through a structural differential amplification derivative probe coupled with handheld Raman spectrometry. In this method, 2-(dimethylamino methyl)-3-hydroxypyridine (2-DMAMPD) was designed and used to capture target OPNAs in the plasmonic hotspot for the first time. The formation of strong Au-N bonds between nanoparticles and pyridine significantly enhances the cross-section and specific Raman intensity of OPNAs, facilitating effective amplification and differentiation of subtle structural variations among different OPNAs. In practical application, the probe solution can be directly sprayed on the surfaces contaminated by agents, allowing the entire detection process to be completed within five minutes, with a detection limit of 2 ng/mL (equivalent to an absolute content of 50 pg). It is worth noting that during the process of detection, highly toxic OPNAs can be quickly transformed into low-toxic or non-toxic derivatives, which is of great significance for green detection and protection of the operator.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0304389425000627; http://dx.doi.org/10.1016/j.jhazmat.2025.137150; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85214577071&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/39808959; https://linkinghub.elsevier.com/retrieve/pii/S0304389425000627
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know