Simulation of the flow field and scour evolution by turbulent wall jets under a sluice gate
Journal of Hydro-environment Research, ISSN: 1570-6443, Vol: 43, Page: 22-32
2022
- 1Citations
- 6Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
This numerical study of scour process tested the skills of computational fluid dynamics in modeling the unsteady flow field during the scour development stage by two-dimensional turbulent wall jets under a sluice gate. The modeling was found to well describe the experimentally observed flow patterns, that is, the main jet diverged to a returning jet and a tail jet. The model also correctly predicts the evolution of the scour depth and length. We examined the self-similarity of the profiles of scour bed and overlying velocities throughout the entire scour development and equilibrium stages. We found self-preserved profiles of velocities and scour beds using local jet parameters. Four growth curves were compared in describing the temporal evolution of scour depth. Finally, non-dimensional scaling of the equilibrium maximal scour depth was investigated. We used the theory of wall jet, and suggested that a modified jet Froude number can be used to predict the equilibrium scour depth, which accounts for the attenuation of the jet velocities along the apron.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S1570644322000326; http://dx.doi.org/10.1016/j.jher.2022.06.002; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85133625376&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S1570644322000326; https://dx.doi.org/10.1016/j.jher.2022.06.002
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know