Jaw-muscle fiber architecture and skull form facilitate relatively wide jaw gapes in male cercopithecoid monkeys
Journal of Human Evolution, ISSN: 0047-2484, Vol: 197, Page: 103601
2024
- 2Citations
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations2
- Citation Indexes2
Article Description
In primates and other mammals, the capacity to generate a wide maximum jaw gape is an important performance variable related to both feeding and nonfeeding oral behaviors, such as canine gape display and clearing the canines for use as weapons during aggressive encounters. Across sexually dimorphic catarrhine primates, gape is significantly correlated with canine height and with musculoskeletal features that facilitate wide gapes. Given the importance of canine gape behaviors in males as part of intrasexual competition for females, functional relationships between gape, canine height, and musculoskeletal morphology can be predicted to differ between the sexes. We test this hypothesis by investigating sex-specific relationships among these variables in a maximum sample of 32 cercopithecoid species. Using phylogenetic least squares regression, we found that of 18 predicted relationships, 16 of the 18 (89%) were significant in males, whereas only six (33%) were significant in females. Moreover, 15 of the 18 correlations were higher—10 of the 18 significantly higher—in males than in females. Males, but not females, showed strong and significant positive allometry of fiber lengths, indicating that increase in male jaw length is accompanied by allometric increases in the capacity for muscle stretch. While males and females showed significant negative allometry for muscle leverage, only males showed significant negative allometry of muscle leverage relative to jaw gape and canine height. Collectively, these results provide support for the hypothesis that as selection acted to increase relative canine height in male cercopithecoids, one change was an allometric increase in relative maximum jaw gape, along with allometric increases in musculoskeletal morphologies that facilitate gape. Lastly, if gape and canine display/clearance are key targets of selection on masticatory morphology in male cercopithecoids, then cercopithecoid monkeys such as macaques, baboons, and sooty mangabeys may have diminished utility as models for drawing paleobiological inferences from musculoskeletal morphology about feeding behavior and diet in fossil hominins.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S004724842400109X; http://dx.doi.org/10.1016/j.jhevol.2024.103601; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85207886907&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/39500178; https://linkinghub.elsevier.com/retrieve/pii/S004724842400109X; https://dx.doi.org/10.1016/j.jhevol.2024.103601
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know