An ensemble model for monthly runoff prediction using least squares support vector machine based on variational modal decomposition with dung beetle optimization algorithm and error correction strategy
Journal of Hydrology, ISSN: 0022-1694, Vol: 629, Page: 130558
2024
- 37Citations
- 9Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
In order to enhance the runoff prediction accuracy, an ensemble prediction model based on least squares support vector machine (LSSVM) is proposed by including variational mode decomposition (VMD), dung beetle optimization algorithm (DBO), and error correction (EC) strategy. First, the monthly runoff time series is decomposed using DBO-optimized VMD (DVMD), yielding a series of intrinsic mode functions (IMF) series and a residual (Res). Then, the LSSVM based on DBO optimization predicts each sub-series column and residual. The final forecast results are achieved after the preliminary forecast results have been stacked and corrected by the DBO-LSSVM prediction error. To verify the reliability of the proposed model, it is applied to the monthly runoff prediction of the Xiajiang hydrological station in the Ganjiang River Basin, the Hongshanhe hydrological station in the Heihe River Basin, and the Jiayugaun hydrological station in the Heihe River Basin. The proposed model is evaluated using four evaluation indicators: RMSE, MAPE, NSEC, and R, and is compared with SVM, LSSVM, PSO-LSSVM, DBO-LSSVM, EEMD-LSSVM, CEEMDAN-LSSVM, DVMD-LSSVM, EEMD-DBO-LSSVM, CEEMDAN-DBO-LSSVM, and DVMD-DBO-LSSVM. Results show that the DVMD-DBO-LSSVM-EC model has the highest accuracy. During the test period, the NSEC of Xiajiang hydrological station is 0.9829, R is 0.9921, the NSEC of Hongshanhe hydrological station is 0.9981, R is 0.9991, and the NSEC of Jiayugaun hydrological station is 0.9772, R is 0.9897. The prediction effect of the model on the extreme value of the three stations after adding the error correction strategy has increased by 45.14%, 62.22%, and 29.49%, respectively, compared with the previous, which is closer to the actual value. The developed combination model offers a new approach to forecasting monthly runoff and extreme values.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0022169423015007; http://dx.doi.org/10.1016/j.jhydrol.2023.130558; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85179758351&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0022169423015007; https://dx.doi.org/10.1016/j.jhydrol.2023.130558
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know