Estimating high-resolution snow depth over the North Hemisphere mountains utilizing active microwave backscatter and machine learning
Journal of Hydrology, ISSN: 0022-1694, Vol: 645, Page: 132203
2024
- 2Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures2
- Readers2
Article Description
While ground meteorological stations provide accurate snow depth data, their limited spatial coverage results in observational gaps. Satellites offer long-term, large-scale observations, addressing these gaps. Existing snow depth retrieval algorithms mainly use passive microwave remote sensing data with a 25 km resolution, insufficient for capturing snow depth variability in mountainous areas. This paper introduces active microwave backscatter data and machine learning techniques for high-resolution snow depth estimation. We conducted a preliminary exploration of the relationship between Sentinel-1 backscatter coefficient σ0 and snow depth. Due to factors such as vegetation coverage and underlying soil properties, the relationship between σ0 and snow depth is complex and nonlinear. Consequently, six machine learning models were trained to learn this relationship using σ0 and auxiliary data as input features, with in-situ snow depth serving as the target variable. After extensive validation, the Extreme Random Trees (ERT) model was selected for its high accuracy and stability. Using the ERT model, we generated 500 m-resolution snow depth data for northern hemisphere mountains, then analyzed temporal snow depth variations and altitudinal stratification.
Bibliographic Details
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know