Thermophysical and corrosion inhibitor evaluation of graphene, aluminum nitride and barium titanate nanolubricants
Journal of the Indian Chemical Society, ISSN: 0019-4522, Vol: 101, Issue: 12, Page: 101462
2024
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
A newly developed kind of fluid known as nanolubricant is produced by dispersing nanometer-sized materials in base oil. The main issue with nanolubricant is particle stability, which occurs when nanoparticles aggregate due to van der Waals forces. The aim of the study is to evaluate the performance of graphene (GR), aluminium nitride (AlN), and barium titanate (BTO) nanolubricants at 0.05 and 0.1 vol % concentrations. The stability was identified by using sedimentation photograph capturing method and zeta potential analysis, while KD2 Pro Analyzer was used to measure the thermal conductivity, and the effect of corrosion inhibitor evaluation was measured according to ASTM D130-19. The nanolubricants are prepared by two-step method and undergo ultrasonication process to ensure the nanoparticles are well dispersed in base oil. The results showed that nanolubricants containing 0.05 vol % nanoparticles are more stable than 0.1 vol % nanolubricants. Nanolubricants with 0.1 vol % showed signs of instability based on low zeta potential values. This is due to the fact that the higher the concentration of nanoparticles, the closer the nanoparticles are to one another. This increased van der Waals attraction and potentially causing nanoparticle agglomeration. Improvement in thermal conductivity was obtained with high volume concentration of GR, AlN and BTO nanoparticles. All nanolubricants achieved an ASTM Standard D130 classification of 1a based on the Copper Strip Corrosion Test Standard (slight tarnish, slight colour change). As a result, it was discovered that all prepared samples are effective anticorrosion lubricating oil additives.
Bibliographic Details
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know