Synergistic effect of spinning drawing and preoxidation stretching on the orientation structure of mesophase pitch carbon fibers
Journal of Industrial and Engineering Chemistry, ISSN: 1226-086X, Vol: 139, Page: 620-629
2024
- 1Citations
- 2Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Mesophase pitch carbon fiber has shown remarkable prospects in specialty carbon material. The mechanical properties of mesophase pitch carbon fiber (CF) cannot be precisely controlled because of the difficulty of forming process regulation. The early forming of carbon fiber (precursor fiber (PF) and pre-oxidation fiber (OF)) is difficult to regulate, such as carbon microcrystal and carbon layer texture, while cause the irreversible growth of carbonization process. Herein, a synergy strategy of spinning drawing and preoxidation stretching is developed to optimize orientation structure, eliminate morphology defects and improve mechanical properties. A synergistic effect of superior spinning drawing and suitable preoxidation stretching is beneficial to adjust the more order rearrangement of carbon microcrystals. The tensile strength of carbon fibers with spinning drawing and preoxidation stretching is increased by 1.7 times, and their defects are reduced by 40%. The results show that the excellent mechanical property of carbon fiber is contributed by the extrusion stress caused by high oxidation crosslinked surface layer under tension, and the micro-flow and rearrangement of carbon microcrystals induced by extrusion stress. A mechanical strengthening mechanism of carbon fiber is proposed, which provides guidance for high-performance mesophase pitch carbon fiber.
Bibliographic Details
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know