Towards an extensible model-based digital twin framework for space launch vehicles
Journal of Industrial Information Integration, ISSN: 2452-414X, Vol: 41, Page: 100641
2024
- 2Citations
- 20Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The concept of Digital Twin (DT) is increasingly applied to systems on different levels of abstraction across domains, to support monitoring, analysis, diagnosis, decision making and automated control. Whilst the interest in applying DT is growing, the definition of DT is unclear, neither is there a clear pathway to develop DT to fully realise its capacities. In this paper, we revise the concept of DT and its categorisation. We propose a DT maturity matrix, based on which we propose a model-based DT development methodology. We also discuss how model-based tools can be used to support the methodology and present our own supporting tool. We report our preliminary findings with a discussion on a case study, in which we use our proposed methodology and our supporting tool to develop an extensible DT platform for the assurance of Electrical and Electronics systems of space launch vehicles.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S2452414X24000852; http://dx.doi.org/10.1016/j.jii.2024.100641; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85196825925&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S2452414X24000852; https://dx.doi.org/10.1016/j.jii.2024.100641
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know