Development of an MHC-class I peptide selection assay combining nanoparticle technology and matrix-assisted laser desorption/ionisation mass spectrometry
Journal of Immunological Methods, ISSN: 0022-1759, Vol: 283, Issue: 1, Page: 205-213
2003
- 9Citations
- 20Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations9
- Citation Indexes8
- CrossRef6
- Patent Family Citations1
- Patent Families1
- Captures20
- Readers20
- 20
Article Description
Human leukocyte antigen (HLA)-bound peptides are central for recognition of infected/transformed cells by T cells, and have formed the basis for many immunotherapy strategies. Epitopes from a given protein sequence (e.g. from viral proteins or oncoproteins) can be predicted by algorithms, as individual HLA receptors bind peptides through defined binding motifs. Peptides with the highest predicted binding score are then normally tested for their binding ability in binding assays. However, with the assays already established, only one peptide can be tested for binding per assay. This is certainly not a reflection of the in vivo situation, where several peptides generated via the major histocompatability complex (MHC)-class I processing pathway compete for HLA-receptor binding. Here, we describe the development of a method that can mimic the competition between multiple peptides for binding to a single HLA receptor molecule. We used silica nanoparticles with immobilised HLA-A2 complexes to screen HLA-A2 binder-peptides out of a known peptide mixture. The washed beads were analysed for selectively bound peptides by matrix-assisted laser desorption/ionisation (MALDI) mass spectrometry. The advantage of the system is that the bound peptides can be unambiguously identified without any prior modification (e.g. radioactive or fluorescence labelling), even from complex peptide mixtures.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0022175903003685; http://dx.doi.org/10.1016/j.jim.2003.09.006; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=10744224450&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/14659912; https://linkinghub.elsevier.com/retrieve/pii/S0022175903003685; https://dx.doi.org/10.1016/j.jim.2003.09.006
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know