Theoretical insight into the hydroxylamine oxidoreductase mechanism
Journal of Inorganic Biochemistry, ISSN: 0162-0134, Vol: 102, Issue: 7, Page: 1523-1530
2008
- 39Citations
- 66Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations39
- Citation Indexes39
- 39
- CrossRef32
- Captures66
- Readers66
- 66
Article Description
The multiheme enzyme hydroxylamine oxidoreductase from the autotrophic bacteria Nitrosomonas europaea catalyzes the conversion of hydroxylamine to nitrite, with a complicate arrangement of heme groups in three subunits. As a distinctive feature, the protein has a covalent linkage between a tyrosyl residue of one subunit and a meso carbon atom of the heme active site of another. We studied the influence of this bond in the catalysis from a theoretical perspective through electronic structure calculations at the density functional theory level, starting from the crystal structure of the protein. Geometry optimizations of proposed reaction intermediates were used to calculate the dissociation energy of different nitrogen containing ligands, considering the presence and absence of the meso tyrosyl residue. The results indicate that the tyrosine residue enhances the binding of hydroxylamine, and increases the stability of a Fe III NO intermediate, while behaving indifferently in the Fe II NO form. The calculations performed on model systems including neighboring aminoacids revealed the probable formation of a bidentate hydrogen bond between the Fe III H 2 O complex and Asp 257, in a high-spin aquo complex as the resting state. Characterization of non-planar heme distortions showed that the meso -substituent induces significant ruffling in the evaluated intermediates.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0162013408000603; http://dx.doi.org/10.1016/j.jinorgbio.2008.01.032; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=44649160029&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/18336913; https://linkinghub.elsevier.com/retrieve/pii/S0162013408000603; https://dx.doi.org/10.1016/j.jinorgbio.2008.01.032
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know