Deep reinforcement learning-based local path planning in dynamic environments for mobile robot
Journal of King Saud University - Computer and Information Sciences, ISSN: 1319-1578, Vol: 36, Issue: 10, Page: 102254
2024
- 3Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures3
- Readers3
Article Description
Path planning for robots in dynamic environments is a challenging task, as it requires balancing obstacle avoidance, trajectory smoothness, and path length during real-time planning.This paper proposes an algorithm called Adaptive Soft Actor–Critic (ASAC), which combines the Soft Actor–Critic (SAC) algorithm, tile coding, and the Dynamic Window Approach (DWA) to enhance path planning capabilities. ASAC leverages SAC with an automatic entropy adjustment mechanism to balance exploration and exploitation, integrates tile coding for improved feature representation, and utilizes DWA to define the action space through parameters such as target heading, obstacle distance, and velocity In this framework, the action space is defined by DWA’s three weighting parameters: target heading deviation, distance to the nearest obstacle, and velocity. To facilitate the learning process, a non-sparse reward function is designed, incorporating factors such as Time-to-Collision (TTC), heading, and velocity. To validate the effectiveness of the algorithm, experiments were conducted in four different environments, and the algorithm was evaluated based on metrics such as trajectory deviation, smoothness, and time to reach the end point. The results demonstrate that ASAC outperforms existing algorithms in terms of trajectory smoothness, arrival time, and overall adaptability across various scenarios, effectively enabling path planning in dynamic environments.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know