Breaking Mg matrix composite property trade-offs via in-situ interface reaction and heterogeneous structure design
Journal of Magnesium and Alloys, ISSN: 2213-9567
2024
- 1Captures
Metric Options: Counts3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures1
- Readers1
Article Description
Many properties of Mg matrix composites are mutually incompatible, and even completely repel each other. Here, we constructed a magnetic layered component in Mg matrix composite reinforced with reduced graphene oxide (RGO) through an in-situ interface reaction strategy, achieving simultaneous improvement in the strength, ductility, and electromagnetic shielding performance of the composite. The magnetic component is generated by the in-situ reaction of Fe 2 O 3 nanoparticles encapsulated on RGO with the Mg matrix. The superior strength-ductility synergy originates from layered heterostructure, which actives non-basal dislocations and enables a stable microcrack-multiplication. The heterogeneous layered structure strengthens the multi-level reflection of electromagnetic wave (EMW) inside the composite. The in-situ interfacial reaction introduces abundant of heterogeneous interfaces into the composites, which improves the interfacial polarization loss ability of the composites. The magnetic RGO layer can provide shape anisotropy that breaks the Snoek limit, thus improving the magnetic loss ability of composite in high-frequency electromagnetic fields. The synergistic action of multiple EMW loss mechanisms improves the electromagnetic shielding performance of composite. The current study emphasizes the influence of interface structure on the mechanical and functional properties of composites, and presents a promising approach for the development of structure/functional integrated composites with enhanced properties.
Bibliographic Details
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know