Manufacturing process monitoring using time-frequency representation and transfer learning of deep neural networks
Journal of Manufacturing Processes, ISSN: 1526-6125, Vol: 68, Page: 231-248
2021
- 70Citations
- 84Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
On-line process monitoring increases product quality, improves process stability, and lowers costs in manufacturing. This paper presents a study of using time-frequency representation and deep neural networks to enable real-time, intelligent manufacturing process monitoring. Acoustic emission (AE) signals are obtained during machine turning operations, and transformed into a time-frequency (TF) representation (image) format. Deep neural networks are then applied to the images for process classification according to the operation's spindle speed, feed rate, and depth of cut. The signals are nonstationary with frequency content varying in time. Four commonly used time-frequency analysis methods are discussed and compared, such as the short-time Fourier transform (STFT), continuous wavelet transform (CWT), Hilbert-Huang transform (HHT), and Wigner–Ville distribution (WVD). The study finds that the multi-resolution capability of the CWT technique allows it to render more accurate and richer details of the signals. Classification of machine-turning-operation processes through conventional monitoring techniques is challenging. First, there are not theories directly relating the signal characteristics to the physical process. Also, important signal components associated with the physics of the process are masked by heavy noise from the lathe. These lead to difficulties in selecting features to be extracted, and obtaining reliable data of these features. These obstacles are overcome by deep neural networks that are capable of learning and extracting meaningful features in an automatous fashion. A transfer learning approach is adopted in this study by using high-performance, representative deep neural networks previously developed for image classification and recognition, including ShuffleNet, GoogLeNet, ResNet18, ResNet50, VGG16, and DenseNet201. They are applied to the TF images obtained during the machine turning operations for process classification. The VGG16 network yields the highest classification accuracy at 92.67% when applied to processes of 12 classes, which demonstrates the potential and feasibility of the proposed method for satisfactory monitoring performance. Lastly, it is shown that the classification accuracy can be improved by using shallower networks modified from the VGG-16 network to mitigate the overfitting issue. A classification accuracy of 95.58% is achieved by removing two convolutional layers.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S1526612521003765; http://dx.doi.org/10.1016/j.jmapro.2021.05.046; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85107641020&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S1526612521003765; https://dx.doi.org/10.1016/j.jmapro.2021.05.046
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know