PlumX Metrics
Embed PlumX Metrics

A defect classification algorithm for gas tungsten arc welding process based on unsupervised learning and few-shot learning strategy

Journal of Manufacturing Processes, ISSN: 1526-6125, Vol: 131, Page: 1219-1229
2024
  • 1
    Citations
  • 0
    Usage
  • 3
    Captures
  • 1
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

  • Citations
    1
  • Captures
    3
  • Mentions
    1
    • News Mentions
      1
      • 1

Most Recent News

New Engineering Data Have Been Reported by Investigators at Shanghai Jiao Tong University (A Defect Classification Algorithm for Gas Tungsten Arc Welding Process Based On Unsupervised Learning and Few-shot Learning Strategy)

2024 DEC 18 (NewsRx) -- By a News Reporter-Staff News Editor at Math Daily News -- A new study on Engineering is now available. According

Article Description

Welding defect prediction is the foundation for ensuring welding quality in gas tungsten arc welding (GTAW). In the prediction process, method based on molten pool vision is the most effective. Since the classification of molten pool defects relies on a substantial volume of labeled data, it is challenging for the models to be applied industrially. This paper presents an algorithm, FS-Classifier, that can achieve high prediction accuracy based on a limited amount of labeled data. The FS-Classifier comprises two stages: Firstly, an unsupervised training approach named RaP is designed to pre-train the feature extractor using extensive unlabeled daily datasets. The RaP consists of a rotation angle prediction task and a position prediction task, which ensure that the network focuses on salient features and precise elements, respectively. Secondly, the support vectors constructed from limited labeled data are used for the feature classifier. The input data is classified to certain class by computing its distances to support vector. The model achieves an accuracy of 94.5 % on the private dataset and 92.8 % on the public dataset for the six classes of defects using 5 % of labeled data volume. In addition, comparative experiments show that our method only requires 5 % of labeled data to achieve accuracy comparable to traditional supervised learning methods. The proposed algorithm addresses the issue of relying on a substantial amount of labeled data in welding process defect classification.

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know