Imprinting nanostructures on metallic surface via underwater electrical wire explosion shock waves
Journal of Materials Processing Technology, ISSN: 0924-0136, Vol: 338, Page: 118784
2025
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Fabricating nanostructures on metallic surface is relevant to various applications, and there is growing interest in developing new methods that balance accuracy, throughput and cost. In this work, a novel method, underwater electrical wire explosion shock imprinting (UEWESI), is proposed as a versatile one-step method for imprinting large-area surface nanostructures on both thin and thick substrates. Using a polycarbonate mold, the 10 μm thickness and 40 × 40 mm² area aluminium foil was uniformly imprinted via single copper wire explosion at a 12 mm standoff distance and 1.8 kJ electrical stored energy, with a fidelity up to 80 %. A periodic imprinting mechanism based on the stress evolution in the substrate was proposed to explore the physical process and explain the effects of standoff distance, shock wave pulse width, substrate thickness and layer arrangement on imprinting performance. Additionally, a scaled-up variant of UEWESI utilizing an exploding wire array was introduced, which generates a large-area planar shock wave front through the convergence of individual shock waves, further enhancing imprinting performance. This work offers a promising alternative for large-scale fabrication of nanostructures on metallic surfaces, with potential applications in flexible electronics, rechargeable batteries, plasmonics and other related fields.
Bibliographic Details
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know