Iron Incorporation in Streptococcus suis Dps-like Peroxide Resistance Protein Dpr Requires Mobility in the Ferroxidase Center and Leads to the Formation of a Ferrihydrite-like Core
Journal of Molecular Biology, ISSN: 0022-2836, Vol: 364, Issue: 1, Page: 97-109
2006
- 33Citations
- 45Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations33
- Citation Indexes33
- 33
- CrossRef28
- Captures45
- Readers45
- 45
Article Description
The Dps-like peroxide resistance protein (Dpr) is a dodecameric protein that protects the human and swine pathogen Streptococcus suis from hydrogen peroxide by removing free Fe 2+ from the cytosol. Subsequent oxidation of iron by Dpr results in the deposition of Fe 3+ inside the protein's central cavity. Structural changes that occur in the ferroxidase center were studied by X-ray crystallography after soaking Dpr crystals with Fe 2+ in the presence of sodium dithionite. Twelve iron-binding sites were identified with each site formed by residues Asp74 and Glu78 from one subunit, and Asp63, His47 and His59 from a 2-fold symmetry-related subunit. Compared to the iron-free Dpr, Asp74 and Glu78 were found to be the most flexible amino acid residues and able to adopt a variety of conformations in different subunits. The crystal structure of an Asp74Ala Dpr mutant soaked with a Fe 2+ -solution revealed variations in the Asp63 position and no iron bound to the ferroxidase center. These results indicate an intrinsic flexibility in the active site that may be important for the catalytic reaction and subsequent nucleation events. Two iron cores with remarkably different features were identified in Dpr using X-ray absorption spectroscopy. Purified Dpr was found to have a small-size iron core with only ∼ 16 iron atoms/dodecamer forming a ferritin-like ferrihydrite structure. Because of its size, this core represents the smallest iron core identified so far in ferritins and other Dps-like proteins. A large-size core (∼ 180 iron atoms/dodecamer) formed after incubating the protein with a ferrous solution shows differences in iron coordination compared to the small size core. Characterization of the two iron cores in Dpr could provide insights into nucleation events and the mechanism of iron core growth in the Dps family of proteins.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0022283606011144; http://dx.doi.org/10.1016/j.jmb.2006.08.061; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=33751057232&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/16997323; https://linkinghub.elsevier.com/retrieve/pii/S0022283606011144
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know